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Abstract—This paper derives new soft-decision metrics for
coded orthogonal signaling in impulsive noise, more specifically
symmetric -stable noise. For the case of a known channel ampli-
tude and known noise dispersion, exact metrics are derived both
for Cauchy and Gaussian noise. For the case that the channel
amplitude or the dispersion is unknown, approximate metrics
are obtained in closed-form based on a generalized-likelihood
ratio approach. The performance of the new metrics is compared
numerically for a turbo-coded system, and the sensitivity to side
information of the optimum receiver for Cauchy noise is consid-
ered. The gain that can be achieved by using a properly chosen
decoding metric is quantified, and it is shown that this gain is
significant. The application of the results to frequency hopping ad
hoc networks is also discussed.

Index Terms—Cauchy, generalized likelihood ratio, impulsive
noise, stable distribution.

I. INTRODUCTION

WHILE noise in communication links is often modeled
as a Gaussian process, many systems are subject to

noise with an impulsive (heavy-tailed) character. One way of
modeling impulsive noise is via the general class of symmetric

-stable ( ) distributions, of which the Gaussian distribution
is a special case. An important example of an environment with
impulsive noise, and where the noise is well modeled by an

distribution, is a wireless ad hoc network with a Poisson
field of co-channel users [1]. In this case, the characteristics of
the noise are directly related to the path loss exponent and the
spatial density of interferers; see Section V.
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The motivation for our work is that communication systems
designed for Gaussian noise can perform very poorly in im-
pulsive noise. We address this problem by deriving optimum
and suboptimum receivers (more precisely, soft-decision met-
rics) for systems that use coded -ary orthogonal signaling
and which experience noise for two special cases—
(Cauchy noise) and (Gaussian noise)—and show that
some of these receivers perform well for a wide range of . The
metrics we derive vary in complexity and in the amount of side
information they require; also, in some cases we resort to ap-
proximations in order to find closed-form solutions. While pre-
vious work on noncoherent receivers in noise addressed
only uncoded systems [2], [3], our work applies to coded sys-
tems using soft-decision decoding. Numerical results are given
for a turbo coded system.

Section II describes the system model for the analysis.
Section III derives the optimum soft-decision metrics for
Gaussian and Cauchy ( ) noise, as well as simpler metrics
requiring less side information using the generalized likeli-
hood ratio paradigm. Section IV discusses numerical results,
including an analysis of the sensitivity to side information.
The application of these results to frequency hopping ad hoc
networks is discussed in Section V, and conclusions are sum-
marized in Section VI.

This paper is an extension of our work previously published
in [4] with additional contributions as follows: we i) provide
a sensitivity analysis of the Cauchy metric to dispersion and
amplitude estimation errors, ii) evaluate the performance of the
Cauchy receiver with a practical amplitude estimator, iii) give
numerical results for nonbinary signals, and iv) discuss the ap-
plication of our results to frequency hopping ad hoc networks.

II. SYSTEM MODEL

Referring to Fig. 1, encoded bits are mapped bits at
a time onto one of orthogonal waveforms, such as -ary
frequency-shift keying (FSK) signals, and transmitted over a
channel that injects additive noise. The received waveform is
correlated, in-phase and quadrature, with each one of the
possible transmitted signals. The output of the th correlator,

, is modeled as

(1)

where all vectors are two-dimensional, representing the
in-phase and quadrature components. In (1), the following is
held.

• is the amplitude of the received signal.
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Fig. 1. System model.

• is the desired signal component associated with the th
waveform (correlator). Assuming that the th waveform
was transmitted, may be expressed as

;
;

where is the relative phase of the signal. This model
allows the amplitude and phase to be different for different
, which would be the case if -FSK modulation is used

on a frequency-selective channel, for example.
• is the additive noise at the output of the th correlator.

We shall assume that , , are independent
identically distributed (i.i.d.) . This is the case if the
noise results from independent Poisson field processes [1],
[3], for example.
An random vector has characteristic function

where the index of stability satisfies , and the
dispersion [5]. The smaller is, the heaver tail the
density function has and the more impulsive the noise is.
Closed forms for the density of an random vector exist
only for the cases of and , which correspond
to the Cauchy ( ) and Gaussian ( ) distributions,
respectively. In the Gaussian case, the variance of each
component is related to the dispersion through .
Note that for , the second-order moment (variance)
of an random variable does not exist; this is one reason
why noise can present problems in communication
systems.

Soft decisions of coded symbols are generated by the demod-
ulator, and passed to the decoder in the form of log-likelihood
ratios (LLRs). The LLR of the th coded bit is defined as

(2)

where is a vector of the outputs of
all in-phase and quadrature correlators, and likewise,

and . Since
each transmitted signal represents a length- sequence of
coded bits , (2) can be expressed as

(3)

where is the probability that sequence was transmitted.
Using Bayes’ rule and assuming all coded sequences are
equiprobable,1 (3) can be written as

(4)

where is the conditional density of the correlator
outputs

(5)

Here, the notation means that the coded bit sequence
results in transmission of the th signal.

We shall assume throughout that the receiver does not have
phase information, so the components of are i.i.d., uniform on

.

III. DECISION METRICS

A. Decision Metrics for Known

To detect without knowing the phase one must average the
conditional density (5) over . By doing so, we can obtain op-
timum decision metrics for Gaussian and Cauchy noise in closed
form. Since the averaging over performed here explicitly re-
lies on the a priori assumption on , we call the resulting
decoding metrics “Bayesian metrics.”

1This assumption can be relaxed by inserting p (c) in (4).
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1) Gaussian Noise ( ): Under the assumption of S2S
noise, the random vectors , , are i.i.d. bivariate
Gaussian with density

(6)

Using (6) in (5), the conditional density of is

(7)

(8)

where in the last line we let be the magnitude of and its
phase, i.e., .

For noncoherent detection, (8) is averaged over , giving

(9)

where is the zeroth-order modi-
fied Bessel function of the first kind.

Using (9), and after canceling terms, the Gaussian LLR for
noncoherent detection with known amplitudes and dispersion is

(10)

where in the last line the summations are over all signals
to which are mapped coded sequences for which and

, respectively.
2) Cauchy Noise ( ): Under the assumption of Cauchy

(i.e., S1S) noise, the density of the noise vector is

(11)

The conditional density of averaged over is

(12)

The expectation in (12) evaluates to

(13)

where is the complete elliptic
integral of the second kind, , ,
and where [6, (2.575.4)] was used to obtain (13).2

Using (12) together with (11) and (13), and after simplifying,
the Cauchy LLR for noncoherent detection with known ampli-
tudes and dispersion is

(14)

where

B. Decision Metrics for Known but Unknown

In practice, the amplitudes are typically unknown to the re-
ceiver. These amplitudes are also generally difficult to estimate
accurately in practice, for example if the system is frequency
hopping, and also due to the impulsive nature of the noise. If
is unknown, one would like to average over both

and . There are two difficulties with this, at least. First, the
distribution of may not be known: Knowing means
quantitatively knowing the fading statistics, and this is difficult
to estimate in the environment we consider since only one,
or possibly a few, observations of each fading realization is
available, and since the noise is heavy-tailed. Second, averaging

does not seem possible in closed form even for
“simple” prior densities . As a remedy, we propose to

approximate the averaged density with

where are the instantaneous maximum-likelihood esti-
mates of . Equivalently, is simply approximated
by jointly maximizing it with respect to . The resulting
detector is effectively a generalized-likelihood ratio (GLR) test,
and therefore we call the metrics derived here “GLR” metrics.
Though GLR tests are more common in detection theory [7],
they have been used before with success in communication
theory [8]–[10].

1) Gaussian Noise ( ): Rewriting (7), and explicitly
noting the dependence on , we have that

(15)

2A previously published evaluation of this integral in [2], and later used again
in [3], contained an error. The square-root in the denominator of (7) in [2] should
instead be (�) , which can then be shown to be equivalent to (13) above.
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Jointly maximizing (15) with respect to and gives

(16)

(We use to denote the likelihood after maximizing it with
respect to . Such a maximized likelihood is sometimes called
a profile likelihood or concentrated likelihood.) The resulting
metric after simplifying is

(17)

For biorthogonal signaling ( ), (17) reduces to
.

2) Cauchy Noise ( ): For , we have from (11)
that

(18)

Maximizing (18) with respect to and yields

(19)

and the resulting metric after simplification is

(20)

For , (20) reduces to
.

It should be noted that the computational complexity of eval-
uating (17) and (20) is much lower than that of evaluating (10)
and (14); however, the expressions for the metrics could be im-
plemented via table lookups—in which case there would be no
difference.

C. Metrics for Unknown and

If both and are unknown, then one must eliminate ,
and from . Like in Section III-B, we shall take
a GLR test approach to this.

1) Gaussian Noise ( ): Consider the profile likelihood
(16). By maximizing this likelihood with respect to , we obtain

and the associated bit metric

(21)
For , (21) simplifies to .

2) Cauchy Noise ( ): Unfortunately, for Cauchy noise,
the profile likelihood (19) is monotonically decreasing as in-
creases for , and the GLR metric for unknown does
not exist in this case.

D. Summary

Table I summarizes the derived metrics. The general expres-
sion for the LLR in each case is obtained by substituting the
fourth column ( ) in

IV. QUANTITATIVE RESULTS

A. Performance Comparison of Metrics

Numerical performance results for the different metrics are
obtained through Monte Carlo simulation of a coded binary
FSK system in noise. Information bits are encoded with a
rate-1/2 binary parallel concatenated convolutional (turbo) code
with interleaver size of 1024 bits and constituent encoder con-
straint length of four. Coded bits are mapped to binary FSK
channel symbols with unit amplitude. After noncoherent detec-
tion and LLR computation, decoding is performed iteratively by
a pair of soft-input/soft-output MAP decoders and is terminated
after eight iterations. Generation of the bivariate noise is
straightforward for 1 and 2. For other values of , we ap-
proximate the noise with the first 100 terms in a bivariate version
of the series representation of an random variable given in
[5, Theorem 1.4.2].

1) Performance in Gaussian Noise: Fig. 2 compares the per-
formance of the metrics developed in Section III on an additive
white Gaussian noise (AWGN) channel ( ) in terms of bit
error rate (BER) versus the inverse of the dispersion, , in
decibels. Recall that in AWGN, is proportional to the con-
ventional signal-to-noise ratio (SNR). As expected, the optimal
receiver for Gaussian noise which uses knowledge of the signal
amplitudes and noise dispersion performs best, as it is perfectly
matched to the noise distribution. The Bayesian Cauchy metric
performs within 1 dB of the optimum Gaussian metric; that is,
the penalty for assuming that the noise is impulsive when it is
in fact not, is small. Also, the GLR metrics perform within 0.5
dB of the optimum Gaussian metric. It is notable that the GLR
metrics achieve this performance without knowledge of the am-
plitudes (and, in one case, without knowing the dispersion).

2) Performance in Cauchy Noise: Fig. 3 compares perfor-
mance on a Cauchy noise ( ) channel. Here, as expected,
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TABLE I
SUMMARY OF SOFT-DECISION METRICS

Fig. 2. BER performance of metrics in S(� = 2)S (Gaussian) noise with bi-
nary (M = 2) signals (side information required by each metric, and equations,
indicated in ( )’s in legend).

the Bayesian Cauchy metric outperforms the other metrics, and
by much larger margins than those in the Gaussian channel
(more than 4 dB here). Interestingly, the GLR Gaussian metric
performs very well even in this impulsive noise. The surpris-
ingly good performance of the GLR Gaussian metric for un-
known can be understood from the sub-Gaussian nature of

variates, which informally means that any random
vector can be viewed as conditionally Gaussian with random
variance [5, Sec. 2.5]. The GLR Gaussian detector which is
not supplied by implicitly chooses the “variance” of the un-
derlying Gaussian noise that maximizes the profile likelihood
(16) for every instance of the “variance.” Not surprisingly, the
GLR Gaussian metric supplied with the “true” performs much
worse because it treats the noise as simply Gaussian with fixed
variance and, thus, is severely mismatched to the actual noise
distribution.

3) Performance in Noise With 1.5 and 0.5: Similar
trends are observed on channels with noise
(Fig. 4) and noise (Fig. 5), but with smaller and
larger margins, respectively, as might be expected in these

Fig. 3. BER performance of metrics in S(� = 1)S (Cauchy) noise;M = 2.

less and more impulsive noise environments. In general, the
Bayesian Cauchy metric shows better performance than the
Bayesian Gaussian metric in this type of noise. Furthermore,
the GLR Gaussian metric (without knowledge of ) provides
substantial gains relative to the Bayesian Gaussian metric over
this range, with no side information and lower complexity than
either of the Bayesian metrics.

B. Nonbinary Signaling

Focusing for the remainder on the better performing met-
rics, Bayesian Cauchy with side information and GLR Gaussian
without side information, Fig. 6 shows results with higher order
signal sets ( and ) in Cauchy noise. We observe
that the required increases in the signal-to-noise-dispersion ratio
(SNDR, i.e., ) to accommodate larger signal sets are smaller
for the Bayesian Cauchy metric than for the GLR Gaussian
metric. In addition, the Bayesian Cauchy metric with 8-FSK sig-
naling exhibits a BER that is comparable to the GLR Gaussian
metric with BFSK. In other words, the Bayesian Cauchy metric
provides a threefold ( ) increase in data rate at the same
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Fig. 4. BER performance of metrics in S(� = 1:5)S noise; M = 2.

Fig. 5. BER performance of metrics in S(� = 0:5)S noise; M = 2.

Fig. 6. BER performance of Bayesian Cauchy and GLR Gaussian metrics in
Cauchy noise; M = 2, 4, 8.

noise dispersion. This improvement can be viewed as the benefit
of the side information used by the Bayesian Cauchy metric.3

3Of course, increasing the FSK constellation size is normally a spectrally in-
efficient means of increasing throughput, but in certain spread spectrum appli-
cations (such as the one described in Section V), spreading bandwidth can be
traded for signal bandwidth.

Fig. 7. Sensitivity of Bayesian Cauchy metric to amplitude estimation error;
Cauchy noise.

Fig. 8. Sensitivity of Bayesian Cauchy metric to dispersion estimation error;
Cauchy noise.

C. Sensitivity of Bayesian Cauchy Metric to Imperfect CSI

In practice, perfect knowledge of the signal amplitude and
noise dispersion, which are required by the Bayesian Cauchy
metric, is unavailable. To investigate the sensitivity of this
metric to imperfect side information, simulations were repeated
in which the side information was perturbed by fixed errors.
Results are shown in Figs. 7 and 8 as a function of the fixed
amplitude and dispersion error, respectively. The performance
metric, here, is the required SNDR to achieve a BER of .
In both cases, the noise is Cauchy ( ).

One observes that the performance of the Cauchy metric is
more sensitive to amplitude errors than dispersion errors. Fur-
thermore, it is more sensitive to dispersion over-estimates than
under-estimates. In fact, substituting zero for the dispersion pa-
rameter when evaluating the metric results in only a 1/2-dB
penalty in SNDR (dotted line in Fig. 8). The performance of
the GLR Gaussian metric (which requires no side information)
is shown in both figures as the dashed line for comparison.

The preceding results suggest that a practical receiver based
on the Bayesian Cauchy metric can provide an advantage over
the GLR Gaussian metric if the noise dispersion is unknown and
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Fig. 9. BER performance of Bayesian Cauchy metric with median amplitude
estimator in Cauchy noise;M = 2.

provided the amplitude estimation error is sufficiently bounded.
To test this hypothesis, simulations with the Bayesian Cauchy
metric were performed in which the signal amplitude informa-
tion was estimated by median filtering of pilot-symbol ampli-
tude measurements [11, Sec. 9.7]. Specifically, into the channel
symbol sequence of each transmitted frame, we inject pilot
symbols carrying fixed energy in each signal dimension (or on
each frequency in FSK). The receiver evaluates the median am-
plitude of this sequence in each frequency, resulting in am-
plitude estimates , , which are then used by
the soft-decision decoder.

Fig. 9 illustrates the BER performance of the Bayesian
Cauchy metric with BFSK signaling and the pilot-assisted
median amplitude estimator. The performance with 20
pilots and unknown noise dispersion ( set to zero in evaluating
the metric) is about 1 dB worse than with perfect CSI, at
BER, and is still over 3 dB better than the GLR Gaussian
metric, which requires no side information. The performance
penalty of unknown dispersion is 0.25 dB, and the penalty of
reducing the number of pilots to 10 is around 1.5 dB. For
the frame sizes used in these examples (2060 channel symbols),
the pilot symbol overhead is less than 1%.

Fig. 10 shows additional results for 4-FSK and 8-FSK sig-
naling. The performance gap between the 10 and 20
median amplitude filters narrows for these schemes since they
operate in higher SNDR regions.

V. APPLICATION TO FH AD HOC NETWORKS

One application of our results is receiver design and radio
link performance analysis for frequency hopping (FH) ad hoc
networks using -FSK signaling. In this context, we are inter-
ested in the performance between a given transmitter–receiver
pair in the presence of interference generated by other terminals
in the network. If we model the FH interferers as being ran-
domly positioned on an infinite plane with a two-dimensional
Poisson distribution and an average density of nodes per unit
area, and if the received signal strength decays with the th
power of distance (i.e., is the path loss exponent), then the
total interference at the receiver can be shown to have an

Fig. 10. BER performance of Bayesian Cauchy metric with median amplitude
estimator in Cauchy noise;M = 2, 4, 8.

distribution with [1]. (That is, the faster the power is
attenuated with distance, the more impulsive is the noise.) Fur-
thermore, when hopping over frequencies, the dispersion of
the interference can be shown to be [3]

(22)

where is the Gamma function. Thus, the parameters of a
given FH system ( , , , and ) can be explicitly related to
the noise parameters and . Using results similar to those in
Section IV we can predict the system’s turbo-coded link perfor-
mance with the various soft decision metrics.

From (22) it is clear that tolerating noise with greater
dispersion is equivalent to either tolerating higher interferer den-
sity , a lower FH processing gain , or some combination of
the two. The preceding numerical results allow us to quantify
these gains. Consider, for example, a channel model with a path
loss exponent of , which corresponds to an index of sta-
bility of . From Fig. 3, we observe that, at BERs of prac-
tical interest, the Cauchy metric with knowledge of the received
signal amplitude allows the system to tolerate several orders of
magnitude higher interferer density or to operate at an equiva-
lent factor less spreading bandwidth compared to the Bayesian
Gaussian metric. Using a practical estimator of the signal am-
plitude results in a 1-dB penalty, and the absence of side infor-
mation altogether can be compensated by a 4-dB increase in the
processing gain. Similar observations can be made for channel
propagation environments with other path loss exponents or, in
other words, different values of .

VI. CONCLUSION

New soft-decision metrics were derived for coded orthogonal
signaling with noncoherent detection in symmetric -stable
noise ( ). In addition to the optimum metrics for Gaussian
and Cauchy noise, a class of generalized-likelihood ratio met-
rics was derived requiring less (or no) side information (i.e.,
signal amplitudes, noise dispersion). Performance was evalu-
ated by Monte Carlo simulation for a system using turbo codes.
While all the studied metrics perform closely (within 1 dB) for
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(Gaussian noise), the Bayesian-derived Cauchy metric
significantly outperforms the other metrics for a wide range
of . This observation is consistent with findings in [2]
and [3] for uncoded systems, and it shows that one can design
a receiver which is robust to impulsive noise and at the same
time gives only a very small loss in sensitivity in the event that
the noise is not impulsive. While the Cauchy receiver requires
knowledge of the noise dispersion and signal amplitudes, a
simpler GLR metric has been found that provides a substantial
performance improvement over the Gaussian metric over a
range of while requiring no side information. However, even
when the Cauchy receiver is used with a simple pilot-assisted
amplitude estimator and without knowledge of the noise dis-
persion, it retains most of its performance advantage over the
GLR metric. These results have direct application to receiver
design in frequency hopping ad hoc networks for which the
self-interference is well modeled as .
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